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ABSTRACT Researchers try to help disabled people by introducing some innovative applications to support
and assess their life. The Brain-Computer Interface (BCI) application that covers both hardware and software
models, is considered in this work. BCI is implemented based on brain signals to be converted to commands.
To increase the number of commands, non-brain source signals are used, such as eye-blinking, teeth
clenching, jaw squeezing, and other movements. This paper introduced a low dimensions robust method
to detect the eye-blinks and jaw squeezing; so that the method can be applied to drive a wheelchair by using
five commands. Our approach is used DiscreteWavelet Transformwith Autoregressive to extract the signal’s
features. These features are classified by using a linear Support VectorMachine (SVM) classifier. The present
method detects every testing sample using a small training set to test and drive a powered wheelchair. The
proposed method is fully implemented practically based on binary-coded commands.

INDEX TERMS Autoregressive, brain-computer interface, coded commands, discrete wavelet transform,
driving a wheelchair, electroencephalography, eye-blinks, jaw squeeze, muscle brain signals, robust features
extraction method, signals detection.

I. INTRODUCTION
Brain-Computer Interface (BCI) is a control protocol that
converts the brain activity signals to some useful commands
to an external device. This system can be classified into two
categories: invasive and noninvasive systems, depending on
the place of the electrodes that will record the signals from
an object.

Invasive BCI system needs the electrodes to be inside
the patient body that will add surgical risks, meanwhile,
the noninvasive BCI system does not need any risky opera-
tions. Non-invasive BCI systems use electrodes distributed
over specific areas of the scalp [1]. These electrodes are
either dry or wet [2]. The recorded signals are classified
depending on the biophysical nature of the signal source [1]:
Metabolic measured by techniques like (near-infrared spec-
troscopy (NIRS), Electrophysiological that measured by elec-
troencephalography (EEG), Magnetic signal that measured
by magnetoencephalography (MEG) [3] and [4].
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BCI used in many fields of live entertainment, live
enhancement (smart home) and the most important use can
be found in medical applications. BCI can be used in reha-
bilitation of stroke patients [5], and to make life easy to
disable people who are locked in their bodies (have good
mental activity with very lowmuscle activity) [3] and [6]. The
features are the measurable property of a process by which
the classifier could separate and recognize classes. There are
many types of feature extraction methods such asAutore-
gressive (AR), Wavelet Transform (WT), Common Spatial
Pattern (CSP), Independent Component Analysis (ICA), Sta-
tistical Features such asMean, standard deviation,Maximum,
Minimum, etc.; or a combination of features [3], [7]. There
are several types of classifiers each one has its advantages
and disadvantages. Depending on the features characteristics,
the nature of the dataset and the number of classes the clas-
sifier should be chosen [8]. To distinguish between classes,
classification methods should be applied on the feature vec-
tor such as Linear discriminant Analysis (LDA), Support
vector machine (SVM), K-nearest neighbor (KNN), Neural
networks Multilayer perceptron (MLP) [1], [9] and [10],
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Deep learning Convolutional Neural Network (CNN) [11]
and many other types.

Some applications used direct muscle signals which are
known as electromyography (EMG) signals, researchers
introduced methods to classify such signals, usually, these
applications are multiclass classification applications [12].

In the applications of electroencephalography (EEG),
the involuntarily eye-blinks which can be considered as arti-
facts that should be removed or rejected to clean up the brain
signals. The muscle activity in EEG signals is considered
as artifacts or noise while they are used as main signals in
direct muscle applications. The healthy natural person blinks
every five seconds involuntarily. The signals that collected
using EEG are different than those collected by Electroocu-
lography (EOG) because of the positions of the channels.
In EEG, the frontal channels record the highest amplitude
and intensity of the ocular signals than other channels [13].
Tan et al. proposed a method to detect the eye-blinks in an
image by tracking the iris [14]. Krishnaveni et al. used an
adaptive thresholding method to remove the ocular artifacts
from the EEG signals [15]. Herrero et al. presented a method
to clean the EEG signals from multiple channels by using
Second Order Blind Identification (SOBI) to separate the
source of the artifacts [16]. Okada et al. proposed a method
using independent Component Analysis (ICA) to identify
and remove the eye-blinks from Magnetoencephalography
(MEG) multi-channels [17]. While Hoffman et al. used the
same method with the EEG signal [18]. Vialatte et al.
used the wavelet transform to reject this artifact [19].
Sovierzoski et al. developed an eye-blink identifier using
time-domain features and MLP [13]. Krolak et al. proposed
a method to detect the face firstly in an image then detect
the eye using the Canonical Correlation Analysis (CCA)
method [20]. Kong et al. proposed a method to identify and
remove the eye-blinks using ICA and Correlation Based
Index (CBI) [21]. Matiko et al. used Morphological Compo-
nent Analysis (MCA) in single-channel EEG real-time appli-
cations [22]. Rihana et al. usedMax,Min, and Kurtosis of the
EEG signals with MLP classifier [23]. Roy et al. recognize
the blinks to estimate the fatigue statue using source sepa-
ration with six features [24]. Tibdewal et.al. detect whether
there is eye-blink in the signal segment or not using DWT and
ANN [25]. Chang et al. proposed an unsupervised method
based on the individual threshold level of the eye-blinks to
detect the artifact. This method is useful in real-time appli-
cations [26]. As eye-blinks sometimes consider as artifacts,
other times, the voluntarily eye-blinks are used to create com-
mands. Al-Gawwam et al. proposed a technique to detect the
eye-blink from a video frame [27]. Other facial movements
could also be used, such as (teeth clenching, eyebrow move-
ment, smile, jawing, and other movements). Lawhern et al.
proposed a method to classify the previous movements using
autoregressive and SVM [28]. Wang et al. proposed a hybrid
BCI system used brain signals with eye-blinks to control
the stopping of a wheelchair. They used (CCA) to identify
the eye-blinks [29]. Lin et al. used DWT to recognize a

facial action among six others. This method recognize teeth
clenching 100% [30]. Heo et al. developed a novel wear-
able which is used in driving a wheelchair [31]. Gao et al.
used teeth clenching as a command in a hybrid system to
write a word using a robot hand. They used DWT to extract
alpha and beta bands of the EEG signal [32]. Khosham et al.
presented a method to detect jaw movements. Power spec-
trum density (PSD) is calculated for the signal, and the
frequency threshold is found in the range 20Hz and above.
For each band, a clenching index is calculated to detect the
jaw clenching [33]. Palaniappan et.al. they proposed a coding
method inspired from Morse code alphabets, the dashes and
dots by using two different mental tasks, the math task and
figure rotation task [34]. Jiang et al. proposed Morse based
coding to control robot arm, this coding used two MI signals
left and right hands imagination [35].

II. METHODS AND MATERIALS
The following Section contains the recording paradigm and
the datasets.

A. DATASETS AND RECORDING PARADIGM
Two different datasets are recorded using 16 dry channels of
OPENBCI headset from three different subjects. The chan-
nels labels are listed in Table 1. Each subject sat on an
armed-chair comfortably in front of a laptop screen. A phrase
appeared on the screen for 5 seconds told the participant to
blink his/her eyes or squeeze his/her jaw five times for each
movement.

TABLE 1. Channels labels in OPENBCI.

1. Dataset1: Three different subjects (suba, subh, and
subz) recorded this dataset in fifteen sessions each one con-
tained 90 samples (43 samples for jaw squeezing and 47 sam-
ples for eye-blinks).

2. Dataset2: Single-subject (subz) recorded five sessions
each session of 100 samples for eye-blinks and jaw squeezes
50 for each movement.

Figure 1 shows the OPENBCI_GUI window that indicates
eye-blinks and jaw squeeze signals. Figure (2-a and b) shows
the intensity of the EEG signal in the head plot for both
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FIGURE 1. Eye-blink and jaw squeezing signals recorded by 16 channels
using OPENBCI headset.

FIGURE 2. The intensity channels during a) eye-blinking and b) jaw
squeezing.

eye-blinks and jaw squeeze, respectively. From these figures,
it is evident that Ch1 and Ch2 read very high-intensity for
eye-blinks signals, while Ch9 and Ch10 are the best channels
for jaw squeezing.

B. THE USED METHODS AND THE PROPOSED METHOD
The following Section contains the features extraction and
classification.

1) DISCRETE WAVELET TRANSFORM (DWT)
DWT is a fast linear algorithm for machine computa-
tion [19], [23]. The applications of DWT in biomedical sig-
nals are compression, de-noising, and feature extraction in
the time-frequency domain. The decomposition process is
a convolution of the input signal S (n) with two analysis
filters, low pass filter labeled as H and high pass filter labeled
as G, as seen in Figures 3. The low-frequency component is
decomposed into high and low frequencies as illustrated in

FIGURE 3. DWT decomposition.

following Eqns.1 and 2:

a (k) =
∑
n

S (n)H (2k-n) (1)

d (k) =
∑
n

S (n)G(2k − n) (2)

2) AUTOREGRESSIVE COMPONENTS (AR)
AR is a spectral estimation method for signal model-
ing [15], [19]. AR aims to obtain the filter coefficients. Math-
ematically AR model of P order describes the signal s(t) as
follows:

s (t) = a1s (t − 1)+ a2s (t − 2)+ . . .+aps (t-p) (3)

where ai is the ith order AR component.

3) THE PROPOSED METHOD DWT_AR
For this present work, we proposed a robust low dimen-
sion method to detect the eye-blinks and jaw squeeze sig-
nals using EEG data. DWT is used to extract the frequency
ranges of both movements using single-level decomposi-
tion. The approximate signal represents the eye-blinks in the
time-frequency domain, and the details signal represents the
jaw squeezing. To reduce the size of the produced signals,
AR with low order is used (p=1 for single user and p=3 for
multiuser detection). The pseudo-code of the training phase
for the proposed method is as follows:
Chan=The selected channels
Time=duration of the trail
Order=BPF order
P=AR order
Type=BPF type
Num_trails=1

While (Num_trails<=Max_num_trails)
Data=Training_data(chan,time,num_trails);
Filtered_data=BPF(Data,Type,Order);
[approximat,details]=DWT(Fitered_data,db1)
Features1=AR(approximate,P)
Features2=AR(details,P)
Features=[Features1,Features2]
Classifier_model=SVM(Features, Training_
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FIGURE 4. Finite state machine of the system.

Labels, linear_kernal)
End While
SVM=save(Classifier_model)

The pseudo-code of the Testing Phase for DWT_AR as the
following:
Do

Data=Read 2 sec of data
Filtered_data=BPF(Data,Type,Order)
[approximat,details]=DWT(Fitered_data,db1)
Features1=AR(approximate,P)
Features2=AR(details,P)
Features=[Features1,Features2]
Desition=SVM(Features)

Until stop

4) SUPPORT VECTOR MACHINE CLASSIFIER (SVM)
The SVM classifier is a simple, fast one that is used to max-
imize the margins between two hyperplanes [7], [9]. These
hyperplanes used to separate binary classes. This classifier
could be linear or non-linear, depending on its kernel. This
classifier is insensitive to over-fitting. As thi classifier is fast,
it is suitable to be used in practical implementations.

5) BCI SYSTEM BASED ON DWT_AR METHOD
This method is implemented in the BCI system to drive a
powered wheelchair. Subz data are used to train the SVM
classifier model that will be used in online testing. As there
is only two status, we have proposed a binary code to refer to
each command that is used in the BCI system. Table 2 shows
the codes and the commands of this system. The zeros rep-
resent eye-blinks, and the ones represent jaw squeeze. One
of the commands that are shown in this table is ‘‘Keep
Moving’’ which is meant to stay forward, backward, or stay
in stopping statues. After turning to left or right, the stop
command automatically activated to prevent the user from
turning in loops. Table 3 shows the commands depending on
the previous states. Figure 4 shows the finite state machine of
the system.

TABLE 2. The coded commands for the system.

TABLE 3. Previous statuses conditions and the commands.

III. RESULTS
A. OFFLINE TESTS RESULTS
Two datasets are used to train and test the proposed method.
The first dataset is multi-subject (suba, subh, and subz) data,
and the second is a single subject data subz. Fourth-order
Butterworth bandpass filter is used to preprocess the data for
removing artifacts. DWT_AR is used to extract features using
a single level (db1) to extract the frequency range (0.1-15) Hz
for eye-blinks and from the frequencies (15-30) Hz for jaw
squeezing. Figure 5 shows the time-series signals of both jaw
squeeze and eyeblinks. Figures 6 and 7 shows the FFT of
these signals, in these figures the irrelevant channels elimi-
nated to ensure the clearance of the signals. As we use the
approximates and details of DWT, see Figures (8-15).

Multiple sizes of training sets are used to extract the fea-
tures from 16 channels using multiple AR orders, as shown
in Figures 16 and 17. Figure 18 shows the accuracy of both
datasets using single, double, and four channels, which 100%
using only two channels (Ch1=FP1 and Ch9=F7). As shown
in Figure 19, DWT_AR can be selected as the best method
among the other four methods.

A comparison is made with four methods in the litera-
ture. The first method is the threshold in which no training
is needed and very efficient in real-time applications when
no previous data is available. The individual threshold is
known [26]. AR is used in [28], while the last method is
time-domain features (Max, Min, and Kurtosis) used in [23].

Both CSP and DWT_AR give 100% detection for
single-user data with small features vector, the long features
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FIGURE 5. Time series of multiple jaw squeezes (red signal) and five
eyeblinks (blue signal).

FIGURE 6. FFT of multiple jaw squeezes (both ch1 and ch9).

vectors increase the processing time and could sometimes
insert irrelevant features that may reduce the performance so
it is better to choose the most relevant features and keep the
features vector small. Table 4 shows a comparison according
to the features vector size of the methods used in this work.
The CSP method provides outstanding results when the train-
ing data is enough and used for the single-user application.
For multi-user and single-user applications, DWT_AR give

FIGURE 7. FFT of multiple eyeblinks(both ch1 and ch9).

FIGURE 8. The DWT approximate coefficients of multiple jaw squeeze
(only ch1).

FIGURE 9. The DWT approximate coefficients of multiple eyeblinks
(only ch1).

100% detection using small training data set and small fea-
tures vector.

B. REAL-TIME TESTS AND ONLINE RESULT
Subz is trained on the system and tested it both offline and
online for both the straight and not straight paths, as shown
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FIGURE 10. The DWT details coefficients of multiple jaw squeeze
(only ch1).

FIGURE 11. The DWT details coefficients of multiple eyeblinks (only ch1).

FIGURE 12. The DWT approximate coefficients of multiple jaw squeeze
(only ch9).

in Figure 20. Table 5 shows the commands that virtually
represent the curved path in Figure 15-b that used for training
on the computer.

Every person has his/her own timing in blinking and other
actions as wewant to convert blinks and jaw squeezes to com-
mands, each command has its own timing to be recognized.

FIGURE 13. The DWT approximate coefficients of multiple eyeblinks
(only ch1).

FIGURE 14. The DWT details coefficients of multiple jaw squeeze
(only ch9).

FIGURE 15. The DWT details coefficients of multiple eyeblinks (only ch9).

In the training phase, Subz finds out the timing of each com-
mand, so the best number of movements for each command
is chosen (i.e., how many jaws squeeze that the user should
do, to get logic one and howmany eyes blinks the user should
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FIGURE 16. Accuracy VS AR order for different sizes of training datasets
(Dataset1).

FIGURE 17. Accuracy VS AR order for different sizes of training datasets
(Dataset2).

FIGURE 18. Accuracy VS different channels for two datasets
(Dataset1 and Dataset2).

do to get logic zero). Subz tests the system in real-time first
using a virtual path on the computer. Table 6 shows the offline
straight path results.

The training makes the subject able to know how many
movements he/she should do to get the right command. For
subz, two jaw squeeze equals to logic one, and four eye-blinks

FIGURE 19. Comparison of different methods.

TABLE 4. Features vector size.

FIGURE 20. The paths that used to train subz.

equal to logic zero. Table 7 shows the results of training
subz on the virtual control path, as in Table 5. The powered
wheelchair is driven using two DC motors, one to the left
and the other to the right for the back wheels of the chair.
Figure 21 shows the real picture of the wheelchair and the
interface circuit. To go forward, both motors are operated in
the forward direction, and for backward movement also both
motors are operated, but in the reverse direction. When we
want to drive the chair to turn to left or right the opposite
motor should be on and the motor of the same direction
is off so the chair could turn to the desired direction. Two
high current H-bridge motor drivers are used to interface the
motor of the chair to the microcontroller one for each motor.
As we already need the computer to inform the user to give
a command, Matlab is used for processing the data streams
from the headset, as shown in Figure 22.
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TABLE 5. The commands of the curved path.

TABLE 6. The accuracy of training Subz on the virtual straight forward
path.

FIGURE 21. The real picture of the wheelchair and the interfacin.

The pseudo-code of the practical implementation of
wheelchair navigation is as follows
FW=0;BW=1;S=0;L=0;R=0;
Do

Data=Read a data segment of 4.5 sec length

FIGURE 22. The real path tested by sub.

TABLE 7. The accuracy of training Subz on the virtual curved path.

Filtered_data=BPF(Data,Type,Order)
For segment=1 to 3

Seg= Filtered_data(segment∗1.5 sec)
[approximat,details]=DWT(seg,db1)
Features1=AR(approximate,P)
Features2=AR(details,P)
Features=[Features1,Features2]
Code(segment)=SVM(Features)

End for
If Code=001 then

If (BW=1 and S=1) or (S=1 and L=1) or (S=1
and R=1)
{FW=1;BW=0;S=0;L=0;R=0;
Go Forward}

Else if (FW=1 and S=1)
{Go Backward
FW=0;BW=1;S=0;L=0;R=0;}

Else if (S=0 and FW=1)) or (S=0 and BW=1)
{Stop
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FIGURE 23. The detailed steps of the syste.

FIGURE 24. The steps of the system.

FIGURE 25. The real path tested by sub.

S=1;}
End if

Else if (S=1 and BW=0)

TABLE 8. The real-time testing information of subz for a straight path.

TABLE 9. The real-time testing information of suba for a curvedpath.

If Code =011
{Turn Left
FW=0;BW=0;S=1;L=1;R=0;}

Else if Code =101
{Turn Right
FW=0;BW=0;S=1;L=0;R=1;}

Else
Keep Moving

End if
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TABLE 10. A comparison among different applications according to the number of actions versus the number of commands.

Else
Keep moving

End if
Until finishing the path
Stop moving
Figure 23 shows the detailed steps of the wheelchair BCI

system. This flowchart contains a software conditions block,
this block depends on the conditions of the pseudo opcode.
Figure 24 shows the brief steps of the system and the real
picture of suba.

Two attempts each day are recorded for training on the
straight forward path, and each attempt consists of ten col-
lections of commands (Forward, Backward, and Stop) taking
some rest between the attempts. Table 8 shows the results of
subz testing the straight forward path on the computer Path=
(Forward, Keep moving, and stop). In this table, the results of
the subject show that after five days of training on the path the
subject could generate the correct commands in the current
time. In the third, fourth and fifth days, the subject could
not generate the stop command at the right time or could not
generate it at all (the subject could not tune the exact timing
of the command). After the training of the subject virtually
a real-time testing takes place using a powered wheelchair,
the wheelchair speed is 8 cm/sec to make the subject able to
give the right command. An ordinary room is used for testing;
the room is 12 m2. Two tests are implemented, one with an
obstacle and the other without, as shown in Figure 25.

The total path length is 8m from the starting point to the
finish point, which is the same place. The first test was driving
the wheelchair without an obstacle. This test takes 20minutes
and 50 commands. In this test, the turn left/right takes place
for 1 sec. Then an automatic stop takes place if the subject
wants to turn with a wider angle. Another command should be
issued. This path finished with fifty commands, including the
go back to avoid thewalls. Suba tests the forward pathwithout
offline test just follow the instructions of subz he could drive
the chair after the third attempt.

The second test is done with an obstacle in the middle of
the room, and the turning command takes place for 3 sec
instead of 1, so the turning angle is wider using a single

command. Here the number of commands to finish the path
is less than the first test, which is thirty-five only. The path
finished in 20 minutes because of the obstacle.

The third test is done to drive the chair between two
obisticals in a lab environment as shown in Figure 25,
Table 9 shows the results of suba.

In [39] the authors used the MI signal. This signal is
recorded by 64 wet channels, while our system only uses two
dry channels. The other works used hybrid signals and a high
number of actions to create commands.

Table 10 shows a comparisonwith different previousworks
that implement different applications, the only work has
almost the same number of commands to actions is [39].

IV. CONCLUSION
A robust method to develop a hybrid BCI application that
detects the eye-blinks and jaw squeezing has been presented.
The proposed method was based on DWT_AR that was capa-
ble to separate the frequency ranges of eye-blinks and jaw
squeezing while the AR reduces the features vector to obtain
a low dimensional vector that includes five features.

DWT_AR was compared against four other methods,
the present work was able to recognize both movements with
an accuracy of 100% for both single subject training and
multi-subject training using a small training set that is around
less than 70 samples. It was concluded that single action
could be used to create five commands based on binary codes.
The prototype was worked on two movements to create five
active commands that include: forward, backward, stop, turn
left and turn right all that using only jaw squeeze and eye-
blink signals. The test results were approved to drive the chair
successfully.
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