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Abstract: The complex grid of scroll chaotic attractors that are generated through nonlinear electronic
circuits have been raised considerably over the last decades. In this paper, it is shown that a subclass
of Cellular Nonlinear Networks (CNNs) allows us to generate complex dynamics and chaos in
symmetry pattern. A novel grid of scroll chaotic attractor, based on a new system, shows symmetry
scrolls about the origin. Also, the equilibrium points are located in a manner such that the symmetry
about the line x = y has been achieved. The complex dynamics of system can be generated using
CNNs, which in turn are derived from a CNN array (1× 3) cells. The paper concerns on the design
and implementation of 2× 2 and 3× 3 2D-grid of scroll via the CNN model. Theoretical analysis and
numerical simulations of the derived model are included. The simulation results reveal that the grid
of scroll attractors can be successfully reproduced using PSpice.
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1. Introduction

Since the treasure trove of Chua’s circuit [1], many scientists from different fields have been
studying the double scroll attractors. Chua’s circuit is a paradigm for chaos, which in turn is deformed
from 3D system. Many bifurcation phenomena have been described in [2], such as Hopf bifurcation,
Rossler’s spiral, double scroll, etc., all these special emphases lead to the double scroll attractor. Leon O.
Chua and Lui-nian Lin in [3], presented a canonical circuit capable of realizing every member of Chua’s
family using a three-region system. In [4], many strange attractors were found from Chua’s oscillator
and illustrated the complexity of Chua’s oscillator. The implementation of a smooth nonlinearity with
a cubic polynomial or higher order was presented in [5], to overcome some subtle features of a real
circuit. In [6], Xiao Fan and Guanrong Chen designed a linear feedback controller composed with
nonlinear modulo or sawtooth function to drive the original nonlinear autonomous system. Chen [7]
introduced a canonical form of the generalized Lorenz system, which was deeply studied and found
to be a new and useful tool for chaos synthesis. Moreover, Jinhu Lu and Guanrong Chen discovered a
new chaotic system [8], that connects Lorenz attractor and Chen’s attractor. A chaotic system of 3D
quadratic smooth autonomous equations can generate two double-wing chaotic attractors [9]. A novel
bounded 4D chaotic system was presented in [10], in which hyperchaos, chaos, equasiperiodic and
periodic behavior were studied. In [11], Serdar et al. worked on numerical, electronic circuit simulation
and electronic circuit implementation of a Sprott chaotic system and its synchronization.

For powerful ability in engineering applications based-chaos, chaotic attractors with high complex
dynamic structures have been interestingly investigated. M. E. Ylcin et al. presented configuration of 3-
and 5-scroll attractors from a generalized Chua’s circuit that lead to n-scroll attractors [12]. In [13] (1D),
(2D), and (3D) grid attractors the scroll generated due to equilibrium points. An approach proposed
by Weihua Deng and Jinhu Lu in [14], generates multiscroll chaotic attractors including (1D) n-scroll,
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(2D) n×m-grid of scroll, and (3D) n×m× l-grid of scroll chaotic attractors. Jinhu Lu and Guanrong
Chen survey the advantages of multiscroll chaotic attractors generation in potential applications
and design theories [15]. Simin Yu et al. proposed a fourth-order double-tours circuit for creating
(1D) n-tours, (2D) n × m-tours, (3D) n × m × l-tours chaotic attractors [16]. In [17], a systematic
threshold control approach for generating multi-scroll chaotic attractors was based on both general
Jerk’s and Chua’s circuits with sine nonlinearity. In [18], a method was proposed for generating
n-, m × n-, and m × n × l-grid-scroll chaotic attractor based series of hyperbolic tangent function.
In [19], generation of multiscroll n×m-dimensional scroll was obtained from a one-dimension scroll
by changing and adapting the system equation by jerk system. Zuo et al. used a CCII or current
conveyor circuit for generating 4× 2× 2× 2-scroll and 4× 2× 2× 2× 2-scroll chaotic attractors which
are basically fourth-order and fifth-order, respectively, via switching control [20]. Based on a general
Jerk circuit, a new nonlinearity function for modulating and generating n-scroll chaotic attractors was
proposed. This function is able to arbitrarily design the shapes, widths, swings, breakpoints, slopes,
equilibrium points, and even the phase portrait of the n-scroll chaotic attractors and the chaos condition
and dynamic mechanism of the jerk circuit are interestingly studied in [21]. A scheme is also designed
for generating 3-scroll and 12-scroll chaotic attractors via switches and analog circuit realization. Simin
Yu et al. suggested increasing the number of equilibrium points type index 2, by employing quadratic
function, so they explored n- and n × m-wing Lorenz attractors [22]. A sawtooth function can be
used to generate multiscroll chaotic attractors by changing the number n of sawtooth function [23].
A simple circuit design was proposed in [24], capable of creating new grid multiscroll chaotic electronic
oscillator. In [25], novel multiscroll attractors and multiwing hidden attractors in five dimensional
memrestive system were proposed.

During the past two decades, different kinds of CNN-based chaotic circuits have facilitated the
knowledge of the chaotic phenomenon by enhancing research on chaos through analog simulation.
A 4D autonomous chaotic system was observed by introducing a state feedback and new n-well
potential function for creating a butterfly wing chaotic attractor [26]. As a nonlinear circuit, CNN
can be considered as a paradigm generator for complex systems [27]. Reasonable feedback from
the states of the cells made the CNN-based chaotic circuit able to produce complex dynamics [28].
After developing the procedures of the CNN, great complex dynamic systems and chaotic circuits
are modelled, such as Chua’s circuit that was controlled by photoresistor nonlinear function [29].
Complex dynamics are proposed in [30] by fractional-order four-cell CNN, a system that exhibits
high dynamical behavior such as periodic, chaotic and hyperchaotic. This dynamics behaviors are
investigated numerically by simulations and theoretically by equations. A hyperbolic tangent function
series is proposed in [31] to generate multi-scroll attractors such as 1D, 2D, and 3D scroll attractors from
an autonomous SC-CNN system. Different approaches for simulating the multivariable nonlinearities
by switching states of CNN in [32] based chaotic systems, Lorenz kind system dynamics and others
like this one are generated by switching CNNs. In [33] it is shown that this structure, SC-CNN, is able
to introduce complex dynamics, many circuits that exhibit complex dynamic behaviors can be obtained
from this structure by changing the values of the cloning templates. On the other hand, CNN is a novel
class of information-processing systems; like a neural network, it is a large-scale nonlinear analog
circuit which processes signals in real-time. It was proposed and investigated by Chua and Yang in
theory and applications [34,35]. In distinct cases, the CNN consists of a homogenous array and its
array has no thresholds, no inputs, and even no outputs, and a sphere of influence that extends only to
the nearest neighbours so the CNN reduces to a nonlinear lattice [36]. The local activity means that
when the system exhibits complexity, the CNN parameters must be chosen so that the cells or their
neighbours are locally actively coupled.

In this paper, a new model of CNN is presented using a modified Chua system. It is based on
Piece Wise Linear (PWL) functions and the equilibrium points are distributed in such a way that give
a symmetrical grid of scroll chaotic attractors. Next, to build CNN model scheme, we consider the
generalized cell model that was introduced by Arena et al. [28]. The designed CNNs with array can
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emulate such a system and generate a grid of scroll. The results showed that a grid of scrolls, 2 × 2 and
3 × 3, can be obtained using numerical simulations. The designed electronic circuit of a CNN model is
also confirmed through the PSpice. The rest of paper is organized as follows. In Section 2, a new model
for generation of a grid of scroll attractors is described. Its dynamical behavior is studied in Section 3.
Section 4 covers a CNN based design to emulate the new system model and generation process of a
grid of scroll using a CNN array. Section 5 describes the realization of a nonlinear electronics circuit
and observation of a grid of scroll using PSpice. The conclusions are given finally.

2. The Generation of 2D-Grid of Scroll from a Modified Chua Model

The attention is to produce a complex chaotic attractor that has a grid of scrolls. The framework is
the Chua chaotic oscillator model.

A. Chua Oscillator Model

The Chua oscillator model [37] is given by

.
x = α[y− f (x)],

.
y = x− y + z,
.
z = −βy− γz,

(1)

f (x) = dx +
1
2
(c− d)[|x + 1| − |x− 1|], (2)

Selecting parameters α = 9, β = 14.28, c = 1/7, and d = 2/7, a typical double scroll Chua’s
attractor can be obtained, as shown in Figure 1. The equibilibrium points can be calculated as saddle
index-2

(
± (β+γ)(d−c)

β(d+1)+γd ,± γ(d−c)
β(d+1)+γd ,± β(d−c)

β(d+1)+γd

)
and saddle index-1 (0, 0, 0). The double scrolls are

evolving from index-2 equilibrium points as shown in Figure 1. Detailed studies of this model,
its dynamics, and bifurcation can be found in [38].
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Figure 1. Double scroll attractor in the Chua oscillator chaotic model.

B. Modified Chua Oscillator Model

To create the 2D-grid of scroll chaotic attractors, it is essential to design a grid of saddle index-2
equilibrium points. System model (1) through (2), therefore, is developed to be

.
x = a f (y)− b f (x),

.
y = x− y + z,

.
z = −β f (y),

(3)
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where a, b, and β are system parameters, suppose that f (x) and f (y) are PWL functions, which
determine the number of scrolls in x and y directions, respectively. That is,

h
(
ξ j
)
= mξ j qξ j

−1 ξ j +
1
2 ∑

qξ j
−1

i=1

(
mξ j i−1 −mξ j i

)(∣∣∣ξ j + ξb
ji

∣∣∣− ∣∣∣ξ j − ξb
ji

∣∣∣), (4)

where ξ jε(x, y), jε[1, 2], and qξ j(= 2, 3 . . .) is the number of scrolls, mξ j i and ξb
ji

are the control
parameters of PWL function. Figure 2 shows nonlinearity function.Symmetry 2019, 11, x FOR PEER REVIEW 4 of 11 
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C. Dynamics of New Model

Two essential features are focused on, the equilibrium points characteristics and bifurcation
diagram to study the dynamics of the new model (3).

(1) Equilibrium points: As mentioned earlier, the distribution of saddle index-2 equilibrium points over
the xy-plane to get a 2D grid of scroll chaotic attractor. By setting

.
x =

.
y =

.
z = 0, the equilibrium

points can be discussed as follows:

• The equilibrium points ±ye
i
(
i = 0, 1, 2, . . . , qξ2 − 1

)
are located on the y-direction in the

state space. One can deduce all positive equilibrium points by using the recursive formula
which is given by

ye
1 =

∑i
i=1(mk−mk−1)ξ

b
2k

m1
,

ye
2 =

∑i
i=1(mk−mk−1)ξ

b
2k

m2
,

...

ye
i =

∑i
k=1(mk−mk−1)ξ

b
2k

mq2−1
,

(5)

• For the equilibrium points ±xe
j
(

j = 0, 1, 2, . . . , qξ1 − 1
)

which are located on the x-direction
in the state space. The positive equilibrium points:

xe
j =

( a
b

)∑
j
k=1(mk −mk−1)ξ

b
k

mq1−1

, (6)

• For the equilibrium points ±ze
r =

(
r = 0, 1, 2, . . . ,

(
qξ1 − 1

)(
qξ2 − 1

))
which are located on

the z-direction in the state space. The positive equilibrium points:

ze
r = ye

i − xe
j ,i ∈

[
0, 1, 2 . . . .qξ2

]
, j ∈

[
0, 1, 2 . . . .qξ1

]
(7)

For example, when qξ1 = qξ2 = 3, a grid of 3× 3 saddle index-2 equilibrium points can be
obtained, as shown in Figure 3.
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Obviously, system (3) with (4) has (qξ1 − 1)(qξ2 − 1) equilibrium points. The corresponding
jacobian matrices and their characteristic equations are, respectively,

J =

 −bmξ1j amξ2i 0
1 −1 1
0 −βmξ2i 0

 (8)

and
λ3 + λ2

(
1 + bmξ1j

)
+ λ

(
bmξ1j + βmξ2i − amξ2i

)
+
(

bmξ1j βmξ2i

)
= 0 (9)

Theoretical analysis shows that all equilibrium points can be classified into saddle index-2.
For example, when β = 10, a = 7, b = 2.5, mξ1o = 1, mξ11 = −2, mξ2o = 2, mξ21 = −4, and
qξ j = 2, system (3) with (4) has a 2x2-grid of equilibrium points. Similarly, for β = 10, a = 7,
b = 2.5, mξ1o = 1, mξ11 = −2, mξ2o = 2, mξ21 = −4, and qξ j = 3, system (3) with (4) has a 3 ×
3-grid of equilibrium points. Obviously, the equilibrium points have eigenvalues λ1 = −4.3268,
λ2,3 = 0.4134± j3.531 and λ1 = −5.755, λ2,3 = 4.877± j3.772, which are called saddle points of
index-2 since the two complex conjugate eigenvalues have positive real parts.

(2) Bifurcation diagram: To confirm the existence of chaos in the new system (3) with (4), assume that
the case of qξ j = 3. Then, β ∈ [7, 12]. The bifurcation diagram of the parameter β of system (3)
with (4) can be obtained as illustrated in Figure 4.
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D. Numerical Simulation Results

As mentioned in Section 2-C, there are (qξ1 − 1)(qξ2 − 1) saddle index-2 equilibrium points.
Considering the system parameters given in Section 2-C, a different 2D-grid of scroll chaotic attractors
can be generated, as shown in Figure 5.
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3. Design of CNN—Based New Chaotic System

This section introduces the design of chaotic system (3) with (4) based on CNN paradigm. A CNN
can produce different forms of complex phenomena just like pattern formation, chaotic scroll, spiral,
and autowaves. It works well as a merged model for complexity and a paradigm for simulating
nonlinear partial differential equations (PDE’s). Arena et al. [28] introduced the generalized cell model
which is characterised by the following state equation:

.
xj = −xj + ajyj + Go + Gs + ij, (10)

with
yj =

1
2
(∣∣xj + 1

∣∣− ∣∣xj − 1
∣∣), (11)

where xj is the single state variable of cell, yj is the single output state of cell, aj, Go, Gs, and ij are
parameters defining the CNN template. It is worth noting that the dynamics of state variables of the
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single cell depend also on the state variables of neighbouring cells. According to model (10) with (11),
the dynamic model of three fully connected CNN cells is

.
x1 = −x1 + a1y1 + a12y2 + a13y3 +

3
∑

k=1
s1kxk + i1,

.
x2 = −x2 + a21y1 + a22y2 + a23y3 +

3
∑

k=1
s2kxk + i2,

.
x3 = −x3 + a31y1 + a32y2 + a3y3 +

3
∑

k=1
s3kxk + i3,

(12)

where x1, x2, and x3 are state variables, y1, y2, and y3 are the corresponding output. By choosing

a13 = a21 = a22 = a23 = a31 = a31 = a33 = 0; s13 = s22 = s33 = 0; i1 = i2 = i3 = 0 (13)

model (12) becomes:
.
x1 = −x1 + a1y1 + a12y2 + s11x1 + s12x2,

.
x2 = −x2 + s21x1 + s23x3,

.
x3 = −x3 + a32y2 + s32x2 + s33x3,

(14)

The new chaotic system (3) with (4) can be designed by CNN model to produce a 2D-grid of scroll
chaotic attractor. So, two different paradigm layouts for generation of n×m 2D-grid of scroll chaotic
attractor by CNN cells are adopted with different CNN cell parameters values, as shown in Table 1.

The design scheme of CNN cells connection is proposed for realizing model (14) as shown in
Figure 6. Assuming that V1 = −Y1 and V2 = Y2 and V3 = X2 for the first cell, V1 = X1 and V2 = X3

for the second cell, V1 = −X2 and V2 = −Y2 for the third cell.

Table 1. Parameters of the designed Cellular Nonlinear Networks (CNN) model.

Grid
Parameters a1 a12 a32 s11 s12 s21 s23 s32 s33

2 × 2-scroll 15.0 −25.2 36.0 −1.5 7.0 1.0 1.0 −10.0 1.0
3 × 3-scroll −7.5 46.2 −66.0 −1.625 15.4 1.0 1.0 −22.0 1.0
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4. CNN Circuit Implementation

In CNN-based implementations, a state variable of the system to be realized is the voltage across
capacitor of the Op-Amp based circuit design which is used to implement the dynamics of a CNN cell.
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A circuit scheme for CNN model is proposed as shown in Figure 7 and it is govering by the following
state equations:

dX1
dt = 1

R6C1

(
R5
R2

Y1 +
R5
R3

Y2 +
R5
R4

X1 +
R5
R1

X2

)
,

dX2
dt = 1

R11C2

(
R9
R7

X1 − X2 +
R9
R8

X3

)
,

dX3
dt = 1

R15C3

(
R14
R12

Y2 +
R14
R11

X2

)
,

(15)

It is mainly constructed by six blocks, which are as follows:

i. N1 is the first state variable generator; a1 = R5
R3

, a12 = R5
R2

, s11 = R5
R4

, s12 = R5
R1

.

ii. N2 is the second state variable generator; s23 = R10
R8

, s21 = R10
R7

.

iii. N3 is the third state variable generator; a32 = R14
R13

, s32 = R14
R12

.

iv. N4 is an inverting amplifier block with unity gain.
v. Both Y1 and Y2 are the nonlinearities of the CNN.
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Figure 7. The CNN circuit scheme of system (13). The components are chosen as follows: R1 =

0.1428 kΩ, R2 = 0.066 kΩ, R3 = 0.00396 kΩ, R4 = 0.4 kΩ, R5 = R7 = R8 = R9 = R18 = R19 =

R20 = R22 = R23 = R24 = R25 = R26 = R27 = R30 = R31 = R32 = R34 = R35 = 1 kΩ, R6 = 10 kΩ,
R11 = 8 kΩ, R12 = 0.1 kΩ, R13 = 0.027778 kΩ, R14 = 1 kΩ, R15 = 5 kΩ, R16 = R28 = 10 kΩ,
R17 = R29 = 1000 kΩ, R21 = R33 = 199 kΩ, C1 = C2 = C3 = 100 nF.
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The design of electronic circuit is based on capacitors, resistors, Op-Amps (TL084) of voltage
supply equal to ±12 V. The nonlinearities functions, Y1 and Y2, are implemented by using the circuitry
block in such a different way so that it can be adapted by state of linkage switches. In accordance
with the switches states that shown in Table 2, one can get different grids of scroll chaotic attractors.
The PSpice simulations show that the new system (3) mutates to a CNN-based chaotic system and for
selected values of the parameters. It shows chaotic dynamical behavior. The phase portraits are shown
in Figure 8, on X3X2-plane projection.

Table 2. The ON −OFF switch linkages K0 − K3.

Grids
Switch K0 K1 K2 K3

2 × 2-scroll ON OFF ON OFF
3 × 3-scroll ON ON ON ON
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5. Conclusions

We have presented a novel third-order chaotic system and its complex dynamics. The new system
is constructed by introducing two PWL functions that enable us to create a 2D-grid of scroll chaotic
attractors. Such PWL function can be implemented by CNN model because its main block corresponds
to saturation function. Dynamical analysis has been investigated, including equilibrium points and
bifurcation. The equilibrium points distribution confirms the principle of symmetry. The locus y = x is
the line of symmetry.

It can be noticed that this is the first CNN model reported in the literature that generates a 2D-grid
of scroll chaotic attractor. Two different layouts generate a 2D-grid of scroll chaotic attractors by CNN
cells. According to the selected parameters, a 2× 2-scroll and a 3× 3-scroll are confirmed. The system
was implemented by using CNN cells. The PSpice environment results of the CNN model circuit
design have demonstrated a good agreement with simulation results of the systems. The new system
can be used in engineering applications based on chaos due to its capability of producing a grid of
scroll attractors with a CNN circuitry.
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