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Abstract. Diabetes mellitus (DM) is probably one of the most popular
diseases among people. In this disorder, a malfunction occurs in the
insulin-glucose regulatory system. To model the DM pathophysiology,
we propose a computational model for the insulin-glucose regulatory
system. In this differential equation model, the complex behavior of
this biological system has been considered. This model shows chaos
and bifurcating properties which have been seen in dynamical diseases.
We have analyzed static and dynamical properties of the proposed
model to show its strength and capability to represent different types
of diabetes and other dysfunction in the insulin-glucose system.

1 Introduction

Glucose, in the group of carbohydrate known as simple sugars, plays a critical role in
providing energy for the brain and red blood cells. To keep the level of glucose in its
narrow standard range, the pancreas releases two endocrine hormones with inhibitory
and excitatory effects; Glucagon, excitatory, and insulin, inhibitory, hormones which
are released form α and β-cells respectively [1,2]. Dysfunction of this system causes
the blood sugar to increase and decrease, which yields respectively diabetes and
hypoglycemia. Diabetes is one of the most prevalent diseases studies of which show
that 23 million U.S. adults have been diagnosed with diabetes until 2016 [3].

There are three main categories of diabetes mellitus; Type 1 diabetes, type 2
diabetes and gestational diabetes mellitus (GDM) [4]. In type 1 diabetes mellitus,
insulin secretion is impaired due to the selective autoimmune destruction of the
pancreatic β-cells in genetically susceptible people [5]. This type of DM is also called
insulin-dependent diabetes. Type 2 diabetes is associated with resistance to insulin,
so inadequate insulin secretion happens in this condition. This disorder, which is also
named non-insulin-dependent diabetes, becomes more common with increasing age,
obesity and weight gain [6]. To have insight about the prevalence of these two types
of the DM, in 2016, type 1 and type 2 diabetes accounted for approximately 6%
and 91% of all cases of diagnosed diabetes, respectively [3]. Glucose intolerance onset
or first recognition during pregnancy is defined as gestational diabetes mellitus [7],
which increases the risk of type 2 diabetes compared with those who had a normal
pregnancy [8]. Also, other disorders in the insulin-glucose regulatory system, e.g.
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hypoglycemia [4,9], hyperglycemia [4,10] and hyperinsulinemia [4,11] can be studied
in computational models which consider the insulin and glucose relationship.

Computational models of natural systems can be used to explain, predict and
control the systems without practical experiments. In biological cases, one can test
the effect of the different drugs without experiments and probable undesired side
effects on a living sample. In 1964, Ackerman et al. [12] proposed two linear dif-
ferential equations to describe the feedback relationships between the blood glucose
and insulin concentrations of experimental data. The parameters of their model were
physiologically meaningful. To model the β-cell effects on releasing insulin, Bajaj
et al. proposed three differential equations which also was a nonlinear model [13].
Their results matched with the experimental observations of both normal and pro-
tein malnutrition groups. In this case, some researchers considered delay differential
equations to model the time delay for the insulin production and effect of insulin
on glucose production [14–16]. Also, gastrointestinal absorption term of glucose is
considered in some models which yield chaotic responses in these systems [17]. [18]
considers three differential equations which can generate chaotic behavior to model
the insulin-glucose regulatory system. Chaotic and fuzzy analyses are also used to
predict maximum fasting blood glucose [19]. To control the insulin-regulatory system
which has uncertain time-delays and chaotic behavior, adaptive sliding mode control
is used in [20].

Some complex nonlinear systems show strange or chaotic attractors for particular
values of their parameters [21]. Most of the biological systems are in the group of
complex and nonlinear systems, so expected to see chaotic responses in experimen-
tal analyses of these systems. The evidence shows chaos in some biological systems
like brain [22–24], heart [25,26], kidney [27] and eye [28] in both physiological and
pathophysiological conditions. In dynamical diseases in which the responses of the
considered system change as the biological parameters change, the disease can be
divided into different distinct phases [29]. With regard to the experimental evidence
being normal, pre-disease or disease phases can have chaos or periodic responses in
dynamical disorders.

β-cell shortage leads to hyperglycemia and diabetes [30]. These cells show bursting
electrical activity in Islet of Langerhans [31]. To describe these complex behaviors,
calcium-activated potassium (K-Ca) channel is utilized in Chay-Keizer model [32,33].
Improved Chay-Keizer models can model both isolated cells and clusters of cells
tightly coupled by gap junctions [34]. It should be noted that complex and chatic
activity of these important agents complicate the insulin-glucose regulatory system’s
activity.

In this article, we propose a new model to explain the glucose, insulin and
β-cell dynamics in the regulatory system in Section 2.1. We analyze both statistical
and dynamical properties of this system using the stability analysis and bifurcation
diagram. In this case, different disorders in the regulatory system can be analyzed
using the bifurcation diagram of the system for related and physiologically meaning-
ful parameters of the system. Finally, the conclusion of the article has been discussed
in Section 4.

2 The proposed model and its linear stability analysis

2.1 Chaotic model of the insulin-glucose regulatory system

To propose a new model, we consider the dynamical relationship between insulin,
glucose and β-cells concentrations. In this context, physiologically meaningful param-
eters have been considered to suggest a three-dimensional differential equation.
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Table 1. Values of the model parameters.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

1.00 2.17 0.41 1.00 0.79 −1.00 1.48 0.16 −0.80 5.53
R11 R12 R13 R14 R15 R16 R17 R18 R19

−0.29 0.27 1.59 −2.98 3.27 2.13 −0.92 5.30 0.00

It should be noted that the proposed model will be expected to show behavioral
responses to the insulin-glucose regulatory system. So the values of the parameters
should be set as these responses will be meaningful. For example, all three variables
of this system show concentrations of the particular materials in the body, so their
values should be positive in time which make the basin of the parameters limited.
Also, the existence of quadratic and cubic terms in the model will give it the potential
to show complex behavior and transitions.

The proposed computational model for the insulin-glucose regulatory system is
as follows:

dx

dt
= −R1x+R2y +R3y

2 +R4z +R5z
2 +R6z

3 +R17

dy

dt
= −R7x−R8x

2 −R9x
3 −R10z −R11z

2 −R12z
3 +R18

dz

dt
= R13y +R14y

2 +R15y
3 −R16z −R19

(1)

where x(t) is insulin concentration, y(t) is blood glucose concentration and z(t) is
the population density of β-cells. Also, R1 represents the reduction rate of insulin
concentration, which is based on its current level. R2 and R3 show the increase rate
of insulin when glucose concentration increases. R4, R5 and R6 show the increase rate
of insulin concentration when the β-cells’ level increases. R7, R8 and R9 represent
the rate of glucose reduction in response to increasing the insulin level. R10, R11 and
R12 show the reduction rate of glucose concentration because of β-cells’ activity. R13,
R14 and R15 represent the rate of increase in β-cells due to the increase in glucose
concentration. R16 shows the rate of decrease in β-cells due to its current level. R17

represents the rate of increase in insulin in the absence of insulin and glucose and
R18 shows increase in the rate of glucose in the absence of insulin and β-cells. Also,
R19 shows decrease rate of β-cells in the absence of insulin and glucose.

2.2 Stability analysis of the proposed system

To study this system, we consider the value of the parameters as Table 1. Figure 1
shows time response of the insulin, 2D phase space of glucose vs. insulin concentra-
tion, 2D phase space of β-cells vs. insulin concentration and 3D phase space of all
three variables of the system. The chaotic response of the system can be seen both
in time and phase plane.

If we change R1 = 2 and the other parameters remain the same as Table 1, this
system has one equilibrium at E∗ = (x∗, y∗, z∗) = (1.22, 0.99, 0.86). The Jacobian
matrix of the system is as follows:

J =

 −R1 R2 + 2R3y R4 + 2R5z + 3R6z
2

−R7 − 2R8x− 3R9x
2 0 −R10 − 2R11z − 3R12z

2

0 R13 + 2R14y + 3R15y
2 −R16

 (2)
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Fig. 1. (a) Insulin concentration, (b) chaotic response in x-y space, (c) x-z space and (d) 3D
view of the chaotic response of the insulin-glucose regulatory system. The value of the para-
meters are [R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18,
R19] = [1.00, 2.17, 0.41, 1.00, 0.79,−1.00, 1.48, 0.16,−0.80, 5.53,−0.29, 0.27, 1.59,−2.98, 3.27,
2.13,−0.92, 5.30, 0.00] and initial conditions are chosen as (x(0), y(0), z(0)) = (1.29, 0.7, 0.44).

which yields eigenvalues as:λ1

λ2

λ3

 =

−1.10− 4.86i
−1.10 + 4.86i
−1.92

 . (3)

So, stability analysis shows that it is a stable equilibrium. Figure 2 shows the
response of the system which displays this stable equilibrium. To analyze the
existence of any hidden attractor in the system, we derive the basin of attrac-
tion of the system when there is a stable equilibrium. Figure 3 shows basin of
attraction of the system. As seen, the system goes to stable equilibrium when
[R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R18,R19] =
[2.00, 2.17, 0.41, 1.00, 0.79,−1.00, 1.48, 0.16,−0.80, 5.53,−0.29, 0.27, 1.59,−2.98, 3.27,
2.13,−0.92, 5.30, 0.00].

Initial conditions are important in chaotic systems and coexistence of attrac-
tors may occur in complex systems. Moreover, they are important in bio-
logical systems as they may show genetic of the patients. So, in Figure 4,
basin of attraction of the system is considered when [R1,R2,R3,R4,R5,R6,R7,
R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R18,R19] = [1.00, 2.17, 0.41, 2.69, 0.79,
−1.00, 1.48, 0.16,−0.80, 5.53,−0.29, 0.27, 1.59,−2.98, 3.27, 2.13,−0.92, 5.30, 0.00].
Chaotic (black), periodic (green) and unbounded (red) attractors are seen in this
figure.
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Fig. 2. (a) Insulin concentration, (b) stable equilibrium in x-y space, (c) x-z space and
(d) 3D view of the response of the insulin-glucose regulatory system. The value of the
parameters are the same as Figure 1 but R1 = 2 and initial conditions are chosen as
(x(0), y(0), z(0)) = (1.29,0.7,0.44).

Fig. 3. This figure shows the basin of attraction of the system in z = 0.44. It shows that
there isn’t any hidden chaotic attractors.
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Fig. 4. Basin of attraction of the system when [R1,R2,R3,R4,R5,R6,R7,R8,R9,
R10,R11,R12,R13,R14,R15,R16,R17,R18,R19] = [1.00, 2.17, 0.41, 2.69, 0.79,−1.00, 1.48, 0.16,
−0.80, 5.53,−0.29, 0.27, 1.59,−2.98, 3.27, 2.13,−0.92, 5.30, 0.00]. In this condition, chaotic
(black), periodic (green) and unbounded (red) attractors are seen.

3 Results and discussion

In this section, we analyze the dynamical results of our proposed model. To consider
different types of DM and other disorders in this system, we derive the bifurcation
diagram of the system for different physiologically meaningful parameters of the
system. In the bifurcation diagram, we consider the response of the system as the
control parameter increases (or decreases). Changing the range and type of system
response indicates the sensitivity of the system to the considered control parameter.

3.1 Type 1 diabetes

In type 1 diabetes, an autoimmune process of the body yields to decreasing the
β-cells concentration [5]. As the number of β-cells decreases, secretion of insulin
reduces too. To consider dynamical changes in the system in this type of diabetes,
we can consider parameter R19 in β-cells’ changing rate equation, ż. This parameter
shows the constant decreasing rate of β-cells’ concentration. As we consider this
decreasing parameter grows, dynamical changes of the glucose, insulin and β-cells
during type 1 diabetes can be derived.

Figure 5 shows the bifurcation diagram of the insulin concentration as parameter
R19 increases. With regard to Figure 5, the insulin concentration has chaotic attractor
while the decreasing rate of β-cells is low. In our hypothesis, these chaotic variations
are normal and in the physiological limits as the insulin level changes in a day.
However, in the case of more destruction of β-cells, these variations vanish and insulin
dynamics becomes ordered through period halving bifurcation.
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Fig. 5. Bifurcation diagram of the system as the parameter R19 changes. This parameter
shows decrease rate of β-cells in the absence of insulin and glucose.

3.2 Hypoglycemia

The amount of blood glucose commonly falls in patients who use insulin and also
have kidney failure, certain tumors, liver disease or use drugs, including alcohol [9,35].
This low blood sugar, which is identified as hypoglycemia, may result in seizures or
unconsciousness. To model this disease, we consider the value of the parameter R7

changes as this parameter shows the decreasing rate of glucose as the insulin level
increases.

In Figure 6, as the controlling parameter, R7, increases, the glucose level decreases
until the dynamic of the system move from chaotic response to periodic and ordered
one. As we mentioned in the previous section, the chaotic and varieties’ responses in
the small values of the parameter can be considered as the normal conditions which
increase the parameter change it to order, vanished and small response.

3.3 Hyperinsulinemia

In the early stage of type 2 DM, a high level of insulin may exist in the blood, which
is a metabolic syndrome known as hyperinsulinemia [11]. Nevertheless, it should be
noted that hyperinsulinemia can be seen in other diseases like hypertension obesity
[11], cancer [36] or even Alzheimer [37]. To model this condition in the insulin-glucose
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Fig. 6. Bifurcation diagram of the system as the parameter R7 changes. This parameter
shows the reduction rate of glucose in response to increasing the insulin level.

regulatory system, parameter R4 which shows the increasing rate in insulin concen-
tration is considered. Figure 7 shows the bifurcation of the system as the parameter
R4 changes from 1 to 4.4. For both low and high levels of the control parameter, the
system shows a chaotic response. So, this disorder can be considered as a transition
which occurs between two other different conditions.

As all the parameters of this system can be controllable, one can consider the
efficiency of newly proposed drugs by considering the relevant parameter in this
model.

4 Conclusion

Diabetes mellitus is one of the common diseases in the world. In this disease, the con-
centration of insulin and glucose of the blood are not in their normal range. To model
diabetes and two other metabolic disorders, we present a new model which represents
the interaction of the glucose, insulin and β-cells. In this differential equation compu-
tational model, we analyze the effect of physiologically meaningful parameters on the
statistical and dynamical properties of the model. Considering bifurcation diagram
of the system for three parameters of the system derives dynamical changes in type
1 diabetes, hypoglycemia and hyperinsulinemia. In these three diseases, we show the
route to the chaotic transition of the system which represents that these disorders
are in the group of dynamical diseases. To further studies, as all the parameters of
this system can be controllable, one can consider the efficiency of newly proposed
drugs by considering the relevant parameter in this model.
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Fig. 7. Bifurcation diagram of the system as the parameter R4 changes. This parameter
shows the increase rate of insulin concentration when the β-cells’ level increases.
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