
CS203 DB Principals

Normalization

Asst.Prof : Asaad Alhijaj

Reference:
“Normalization” by Jason Park , Fall 2005 CS157A

Pitfalls in Relational Database Design

 Relational database design requires that we

find a “good” collection of relation schemas. A

bad design may lead to

 Repetition of Information.

 Inability to represent certain information.

 Design Goals:

 Avoid redundant data

 Ensure that relationships among attributes

are represented

 Facilitate the checking of updates for

violation of database integrity constraints.

Example
 Consider the relation schema:

Lending-schema = (branch-name, branch-city, assets,

customer-name, loan-number, amount)

 Redundancy:

 Data for branch-name, branch-city, assets are repeated for each loan that a

branch makes

 Wastes space

 Complicates updating, introducing possibility of inconsistency of assets value

 Null values

 Cannot store information about a branch if no loans exist

 Can use null values, but they are difficult to handle.

Database Normalization

 Database normalization is the process of removing
redundant data from your tables in to improve storage
efficiency, data integrity, and scalability.

 In the relational model, methods exist for quantifying how
efficient a database is. These classifications are called
normal forms (or NF), and there are algorithms for
converting a given database between them.

 Normalization generally involves splitting existing tables
into multiple ones, which must be re-joined or linked
each time a query is issued.

History

 Edgar F. Codd first proposed the process of
normalization and what came to be known as
the 1st normal form in his paper A Relational
Model of Data for Large Shared Data Banks
Codd stated:

“There is, in fact, a very simple elimination
procedure which we shall call normalization.
Through decomposition nonsimple domains are
replaced by ‘domains whose elements are
atomic (nondecomposable) values.’”

Normal Form

 Edgar F. Codd originally established three

normal forms: 1NF, 2NF and 3NF. There

are now others that are generally accepted,

but 3NF is widely considered to be

sufficient for most applications. Most

tables when reaching 3NF are also in

BCNF (Boyce-Codd Normal Form).

Table 1

Title Author1 Author2 ISBN Subject Pages Publisher

Database

System

Concepts

Abraham

Silberschatz

Henry F.

Korth

007295886

3

MySQL,

Computers

1168 McGraw-Hill

Operating

System

Concepts

Abraham

Silberschatz

Henry F.

Korth

047169466

5

Computers 944 McGraw-Hill

Table 1 problems

 This table is not very efficient with storage.

 This design does not protect data integrity.

 Third, this table does not scale well.

First Normal Form

 In our Table 1, we have two violations of
First Normal Form:

 First, we have more than one author field,

 Second, our subject field contains more
than one piece of information. With more
than one value in a single field, it would be
very difficult to search for all books on a
given subject.

First Normal Table

 Table 2

Title Author ISBN Subject Pages Publisher

Database System

Concepts

Abraham

Silberschatz

0072958863 MySQL 1168 McGraw-Hill

Database System

Concepts

Henry F. Korth 0072958863 Computers 1168 McGraw-Hill

Operating System

Concepts

Henry F. Korth 0471694665 Computers 944 McGraw-Hill

Operating System

Concepts

Abraham

Silberschatz

0471694665 Computers 944 McGraw-Hill

 We now have two rows for a single book.

Additionally, we would be violating the

Second Normal Form…

 A better solution to our problem would be

to separate the data into separate tables-

an Author table and a Subject table to

store our information, removing that

information from the Book table:

Subject_ID Subject

1 MySQL

2 Computers

Author_ID Last Name First Name

1 Silberschatz Abraham

2 Korth Henry

ISBN Title Pages Publisher

0072958863 Database System

Concepts

1168 McGraw-Hill

0471694665 Operating System

Concepts

944 McGraw-Hill

Subject Table

Author Table

Book Table

 Each table has a primary key, used for
joining tables together when querying the
data. A primary key value must be unique
with in the table (no two books can have
the same ISBN number), and a primary
key is also an index, which speeds up data
retrieval based on the primary key.

 Now to define relationships between the
tables

Relationships

ISBN Author_ID

0072958863 1

0072958863 2

0471694665 1

0471694665 2

ISBN Subject_ID

0072958863 1

0072958863 2

0471694665 2

Book_Author Table

Book_Subject Table

Second Normal Form

 As the First Normal Form deals with redundancy
of data across a horizontal row, Second Normal
Form (or 2NF) deals with redundancy of data in
vertical columns.

 As stated earlier, the normal forms are
progressive, so to achieve Second Normal Form,
the tables must already be in First Normal Form.

 The Book Table will be used for the 2NF
example

2NF Table

Publisher_ID Publisher Name

1 McGraw-Hill

ISBN Title Pages Publisher_ID

0072958863 Database System

Concepts

1168 1

0471694665 Operating System

Concepts

944 1

Publisher Table

Book Table

2NF

 Here we have a one-to-many relationship
between the book table and the publisher. A
book has only one publisher, and a publisher will
publish many books. When we have a one-to-
many relationship, we place a foreign key in the
Book Table, pointing to the primary key of the
Publisher Table.

 The other requirement for Second Normal Form
is that you cannot have any data in a table with a
composite key that does not relate to all portions
of the composite key.

Third Normal Form

 Third normal form (3NF) requires that
there are no functional dependencies of
non-key attributes on something other
than a candidate key.

 A table is in 3NF if all of the non-primary
key attributes are mutually independent

 There should not be transitive
dependencies

Boyce-Codd Normal Form

 BCNF requires that the table is 3NF and

only determinants are the candidate keys

